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Abstract. We calculate the single-spin-dependent cross section formula for the D-meson produc-
tion and the direct-photon production in the pp collision induced by the twist-3 triple-gluon corre-
lation functions in the transversely polarized nucleon. W also present a model calculation for the
asymmetris in comparison with the preliminary data given by RHIC, showing the impact of the
correlation functions on the asymmetries.
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1. INTRODUCTION

Understanding the origin of the large single spin asymmetries (SSAs) observed in var-
ious high-energy semi-inclusive processes have been a big challenge during the past
decades. The SSA can be generated as a consequence of the multiparton correlations
inside the hadrons in the collinear factorization approach which is valid when the trans-
verse momentum of final state hadron can be regarded as hard. Recently the mesure-
ment of SSA for heavy meson production by the PHENIX collaboration [1] have moti-
vated theoretical works for multigluon correlation inside the transversly polarized pro-
ton which is represented by the triple-gluon correlation functions [2, 3] because heavy
quarks fragmenting into final state meson are mainly produced by the gluon fusion
mechanism.

In this work, we study the contribution of the triple-gluon correlation functions to
SSA for the D-meson and the direct photon productions in the pp collision [4, 5].
We will derive the corresponding single-spin dependent cross sections by applying
the formalism developed for the semi-inclusive deep inelastic scattering [3]. We will
also present a model estimate for the triple-gluon correlation functions by comparing
our result with the RHIC preliminary data for the D-meson production [1]. Finally we
perform numerical calculation of the asymmetry for the direct photon production by
using the models obtained from p↑p → DX to see its impact on the SSA for this process.

2. TRIPLE-GLUON CORRELATION FUNCTIONS

Triple-gluon correlation functions for the transversely polarized nucleon are defined as
the color-singlet nucleon matrix element composed of the three gluon’s field strength



tensors Fαβ . Corresponding to the two structure constants for the color SU(3) group,
dbca and fbca, one obtains two independent triple-gluon correlation functions O(x1,x2)
and N(x1,x2) as [3]

Oαβγ(x1,x2) = −g(i)3
∫ dλ

2π

∫ dµ
2π

eiλx1eiµ(x2−x1)〈pS|dbcaFβn
b (0)Fγn

c (µn)Fαn
a (λn)|pS〉

= 2iMN

[

O(x1,x2)gαβ εγ pnS +O(x2,x2 − x1)gβγεα pnS +O(x1,x1 − x2)gγαεβ pnS
]

, (1)

Nαβγ(x1,x2) = −g(i)3
∫ dλ

2π

∫ dµ
2π

eiλx1eiµ(x2−x1)〈pS|i fbcaFβn
b (0)Fγn

c (µn)Fαn
a (λn)|pS〉

= 2iMN

[

N(x1,x2)gαβ εγ pnS −N(x2,x2 − x1)gβγεα pnS −N(x1,x1 − x2)gγαεβ pnS
]

, (2)

where MN is the nucleon mass, S is the transverse-spin vector for the nucleon, n is the
light-like vector satisfying p ·n = 1 and we used the shorthand notation as F βn ≡ Fβρnρ
etc. The gauge-link operators which restore gauge invariance of the correlation functions
are suppressed in (1) and (2) for simplicity.

3. D-MESON PRODUCTION IN pp COLLISION

Applying the formalism for the contribution of the triple-gluon correlation functions
to SSA developed in [3], the twist-3 cross section for p↑(p,S⊥)+ p(p′) → D(Ph)+ X
(center-of-mass energy

√
S) can be obtained in the following form [4]:

P0
h

d∆σ
d3Ph

=
α2

s MNπ
S

εPh pnS⊥ ∑
f =cc̄

∫ dx′

x′
G(x′)

∫ dz
z2 D f (z)

∫ dx
x

δ (s̃+ t̃ + ũ)
1
zũ

×
[

δ f

{(

d
dx

O(x,x)− 2O(x,x)
x

)

σ̂O1 +

(

d
dx

O(x,0)− 2O(x,0)

x

)

σ̂O2 +
O(x,x)

x
σ̂O3 +

O(x,0)

x
σ̂O4

}

+

{(

d
dx

N(x,x)− 2N(x,x)
x

)

σ̂N1 +

(

d
dx

N(x,0)− 2N(x,0)

x

)

σ̂N2 +
N(x,x)

x
σ̂N3 +

N(x,0)

x
σ̂N4

}]

, (3)

where δc = 1 and δc̄ = −1, D f (z) represents the c → D or c̄ → D̄ fragmentation
functions, G(x′) is the unpolarized gluon density, pc is the four-momentum of the c
(or c̄) quark (mass mc) fragmenting into the final D (or D̄) meson and s̃, t̃, ũ are
defined as s̃ = (xp+ x′p′)2

, t̃ = (xp− pc)
2 −m2

c , ũ = (x′p′− pc)
2 −m2

c. The hard cross
sections σ̂ O1,O2,O3,O4 and σ̂ N1,N2,N3,N4 are listed in [4]. The cross section (3) receives
contributions from O(x,x), O(x,0), N(x,x) and N(x,0) separately, which differs from
the previous result [2].

We perform numerical estimate for AN based on (3). Since |σ̂ O3,O4,N3,N4| �
|σ̂ O1,O2,N1,N2| and σ̂ O1 ' σ̂ O2 ∼ σ̂ N1 ' −σ̂ N2, we assume the relation for the four
functions as O(x,x) = O(x,0) = N(x,x) = −N(x,0) for simplicity. For the functional
form of each functions, we employ the following two models:

Model 1 : O(x,x) = KG xG(x), (4)
Model 2 : O(x,x) = K ′

G
√

xG(x), (5)

where KG and K′
G are the constants to be determined so that the calculated asymmetry is

consistent with the RHIC data [1].



For the numerical calculation, we use GJR08 [6] for G(x) and KKKS08 [7] for D f (z).
We calculate AN for the D and D̄ mesons at the RHIC energy at

√
S = 200 GeV and the

transverse momentum of the D-meson PT = 2 GeV. We set the scale of all the distribution
and fragmentation functions at µ =

√

P2
T +m2

c with the charm quark mass mc = 1.3 GeV.
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FIGURE 1. Results of AD
N for D0 (a) and D̄0 (b) for Model 1 in (4) with KG = 0.002, and AD

N for D0 (c)
and D̄0 (d) for Model 2 in (5) with K ′

G = 0.0005. Short bars denote the RHIC preliminary data taken from
[1].

Fig. 1 shows the result of AN for the D0 and D̄0 mesons together with the preliminary
data [1] denoted by the short bars. The sign of the contribution from {O(x,x),O(x,0)}
changes between D0 and D̄0 as shown in (3), which causes the large difference between
AN for the D0 and D̄0. If one reverses the relative sign between O and N,the result for the
D0 and D̄0 mesons will be interchanged. The values KG = 0.002 and K ′

G = 0.0005 have
been determined so that AN does not overshoot the RHIC data. By comparing the results
for the models 1 and 2 in Fig. 1, one sees that the behavior of AN at xF < 0 depends
strongly on the small-x behavior of the triple-gluon correlation functions. Therefore AN
at xF < 0 is useful to get constraint on the small-x behavior of the three-gluon correlation
functions.

4. DIRECT PHOTON PRODUCTION IN pp COLLISION

Applying the same formalism, the twist-3 cross section for the direct photon production,
p↑(p,S⊥)+ p(p′) → γ(q)+ X , induced by the triple-gluon correlation functions can be
obtained as [5]

Eγ
dσ
d3q

=
4αemαsMNπ

S ∑
a

∫ dx′

x′
fa(x′)

∫ dx
x

δ (ŝ+ t̂ + û)εqpnS⊥ 1
û

×
[

δa

( d
dx

O(x,x)− 2O(x,x)
x

+
d
dx

O(x,0)− 2O(x,0)

x

)

− d
dx

N(x,x)+
2N(x,x)

x
+

d
dx

N(x,0)− 2N(x,0)

x

](

1
N

ŝ2 + û2

ŝû

)

, (6)

where fa(x′) is the twist-2 unpolarized quark density, δa = 1(−1) for quark (antiquark)
and ŝ, t̂, û are defined as ŝ = (xp + x′p′)2, t̂ = (xp− q)2, û = (x′p′− q)2. As shown in
(6), the combinations O(x,x)+O(x,0) and N(x,x)−N(x,0) appear in the cross section
accompanying the common partonic hard cross section which is the same as the twist-2



hard cross section for the qg → qγ scattering. This result differs from the previous study
in [8].

We performed a numerical calculation for Aγ
N for the following two cases: Case 1;

O(x,x) = O(x,0) = N(x,x) = −N(x,0) and Case 2; O(x,x) = O(x,0) = −N(x,x) =
N(x,0). We use GJR08 [6] for fq(x′) and the models (4) and (5) with KG = 0.002 and
K′

G = 0.0005 which are consistent with RHIC AD
N data. We calculate Aγ

N at the RHIC
energy at

√
S = 200 GeV and the transverse momentum of the photon qT = 2 GeV,

setting the scale of all the distribution at µ = qT .
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FIGURE 2. (a) AN for Case 1 with Model 1. (b) AN for Case 1 with Model 2. (c) AN for Case 2 with
Model 1. (d) AN for Case 2 with Model 2.

Fig. 2 shows the result for Aγ
N for each case. One can see AN at xF > 0 become almost

zero regardless of the magnitude of the triple-gluon correlation functions, while AN at
xF < 0 depends strongly on the small-x behavior of the triple-gluon correlation functions
as in the case of p↑p → DX . At negative xF , large-x′ region of the unpolarized quark
distributions and the small-x region of the triple-gluon distributions are relevant. For
the above case 1, only antiquarks in the unpolarized nucleon are active and thus lead to
small Aγ

N as shown in Figs. 2(a) and (b). On the other hand, for the case 2, quarks in
the unpolarized nucleon are active and thus lead to large Aγ

N as shown in Figs. 2(c) and
(d). Therefore Aγ

N at xF < 0 for the direct photon production could provides us with an
important information on the relative sign between O and N.
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